المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : مسألة وإجابتها ( أولمبياد 1ث ) - موضوع يومي



أستاذ الرياضيات
06-01-2010, 01:26 PM
(1)

أحسب قيمة http://latex.codecogs.com/gif.latex?\fn_cs \150dpi y حيث

http://latex.codecogs.com/gif.latex?\fn_cs \150dpi y=\left ( log_{2}3 \right )\left ( log_{3}4 \right )\left ( log_{4}5 \right )\cdots \cdots \left ( log_{31}32 \right )

الحل


http://latex.codecogs.com/gif.latex?\fn_cs \150dpi y=\frac{log3}{log2}\cdot \frac{log4}{log3}\cdot \frac{log5}{log4}\cdots \cdots \frac{log32}{log31}=\frac{log32}{log2}=log_{2}32=5

أستاذ الرياضيات
06-01-2010, 01:27 PM
(2)


أوجد باقي قسمة http://latex.codecogs.com/gif.latex?\150dpi x^{6}-63 على http://latex.codecogs.com/gif.latex?\150dpi x-2



الحل


http://latex.codecogs.com/gif.latex?\150dpi x^{6}-63=\left ( x^{6}-2^{6} \right )+1=\left ( x-2 \right )\left ( x^5+2x^4+4x^3+8x^2+16x+32 \right )+1


إذن باقي القسمة = http://latex.codecogs.com/gif.latex?\150dpi 1

فوزية المغامسي
06-01-2010, 06:35 PM
فكرة رائعة اخي
بارك الله فيك
بعد اذنك مشاركة
(3)
http://files02.arb-up.com/i/00037/juhlqtjll2mg.png

صالح الحديثي
06-02-2010, 06:27 PM
شكرآ كثيرآ أستاذ الرياضيات وجزاك الله خيرآ .


أتمنى من مشرفي المنتدى نقله لمنتدى اولومبياد الرياضيات.
حفظ الله الجميع من كل سوء.